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SUMMARY

The DKxanthenes are a family of yellow pigments
which play a critical role in myxobacterial develop-
ment. Thirteen unique structures from Myxococcus
xanthus DK1622 differ in the length of their character-
istic polyene functionality, as well as the extent of
methyl branching. We aimed to understand the
mechanistic basis for this ‘‘molecular promiscuity’’
by analyzing the gene cluster in DK1622, and com-
paring it to the DKxanthene biosynthetic locus in
a second myxobacterium, Stigmatella aurantiaca
DW4/3-1, which produces a more limited range of
compounds. While the core biosynthetic machinery
is highly conserved, M. xanthus contains a putative
asparagine hydroxylase function which is not pres-
ent in S. aurantiaca. This observation accounts, in
part, for the significantly larger metabolite family in
M. xanthus. Detailed analysis of the encoded hybrid
polyketide synthase (PKS)-nonribosomal peptide
synthetase (NRPS) assembly line provides direct ev-
idence for the mechanism underlying the variable
polyene length and the observed pattern of methyl
functionalities.

INTRODUCTION

The DKxanthenes comprise a novel family of secondary metab-

olites that are characteristic of the Gram-negative soil-dwelling

bacterium Myxococcus xanthus (Meiser et al., 2006; Krug

et al., 2008). The presence of such pigments in M. xanthus was

suspected for decades, because growth phase cells give rise

to bright yellow colonies (Burchard et al., 1977). Natural so-

called ‘‘phase variants’’ of M. xanthus exhibit a paler, tan pheno-

type, indicative of a deficiency in pigment production. In addi-

tion, tan cells are unable to form mature myxospores, supporting

a role for the DKxanthenes in regulating the complex life cycle of

the myxobacteria (Laue and Gill, 1994, 1995; Kaiser, 2004; Kuner

and Kaiser, 1982; Shimkets, 1999). Indeed, deliberate inactiva-

tion of the DKxanthene biosynthetic pathway resulted in tan-col-

ored mutants that were defective in both fruiting body formation

and sporulation (Meiser et al., 2006), suggesting that the natural
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phase variants exhibit the same deficit. Furthermore, these de-

fects could be at least partially complemented by the addition

of purified DKxanthenes (Meiser et al., 2006). Nonetheless, the

precise role that the DKxanthenes play in morphological differ-

entiation remains to be elucidated.

‘‘Retrobiosynthetic analysis’’ of the DKxanthenes strongly

suggested their origin from a hybrid polyketide synthase

(PKS)-nonribosomal polypeptide synthetase (NRPS) system,

an expectation that was confirmed by identification of the

gene cluster (Meiser et al., 2006). PKSs and NRPSs are gigantic

multienzyme ‘‘assembly lines’’ that catalyze the sequential con-

densation of simple building blocks, acyl-CoA thioesters and

amino acids, respectively (Walsh, 2008; Weissman and Leadlay,

2005). Chain extension is accomplished by successive modules

of enzymes, and thus, the genetic organization is colinear with

the sequence of biosynthetic transformations. PKS modules

minimally incorporate acyl transferase (AT) and ketosynthase

(KS) domains, which are required for selection of a specific

building block and its incorporation via a thioclaisen-like con-

densation, into the growing chain. The resulting intermediate

can undergo a variable extent of redox adjustment, depending

on the specific complement of reductive domains (ketoreduc-

tase [KR], dehydratase [DH], and enoyl reductase [ER]) present

within the module. Throughout the biosynthesis, the chain ex-

tension intermediates are tethered to the multienzymes in thio-

ester linkage to the phosphopantetheine prosthetic group of

the integral acyl carrier protein (ACP) of each module; this archi-

tecture allows the chains to be shuttled efficiently between the

various active sites. The analogous core functions of NRPSs

include condensation (C) (or heterocyclization [HC]) and PCP

domains, whereas optional modifying enzymes may comprise

epimerase (E), methyl transferase (MT), and oxidase (Ox) func-

tions (Walsh et al., 2001). Chain termination in both systems is

typically performed by an integral thioesterase (TE) activity

(Kopp and Marahiel, 2007). The existence of hybrid PKS-

NRPS multienzymes reflects the shared biosynthetic logic of

the two systems.

The modular organization of PKSs and NRPSs has encour-

aged efforts to engineer these systems to produce new struc-

tures with potential as drug leads (Walsh, 2008; Weissman and

Leadlay, 2005). Although genetic manipulation, particularly of

PKS systems, has been demonstrated to yield the expected

products, the low efficiency of these experiments has so far lim-

ited their use in industrial drug discovery and has highlighted the
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need to improve our fundamental understanding of the structure

and function of these gigantic proteins (Weissman and Müller,

2008b). The DKxanthene biosynthetic pathway represents an at-

tractive target for investigation because it incorporates both PKS

and NRPS machineries. Furthermore, although modular mega-

synthases in Streptomyces typically generate one or a few

closely related metabolites, the DKxanthene pathway gives

rise to a suite of structural variants (Weissman and Müller,

2008a; Fischbach and Clardy, 2007). Even more remarkably,

37 epothilones are produced by a single strain of Sorangium cel-

lulosum (Hardt et al., 2001). We aimed to shed light on the molec-

ular basis for this ‘‘diversity-oriented biosynthesis,’’ which is

common to many myxobacteria, by analyzing the DKxanthene

biosynthetic genes. Here, we report a detailed analysis of the

cluster in the model strain M. xanthus DK1622 and compare it

to a second, novel DKxanthene locus in the myxobacterium Stig-

matella aurantiaca DW4/3-1. These data reveal an unusual bio-

synthetic pathway that makes variable use of a highly iterative

PKS module.

Figure 1. The DKxanthene Metabolite Fam-

ilies and HPLC-MS Analysis of Strains in this

Study

(A) DKxanthenes structures present in M. xanthus

DK 1622/1050 and S. aurantiaca DW4/3-1. The rel-

ative quantity of each metabolite is indicated by

the dot intensity. n indicates both the number of

double bonds at this position, as well as the num-

ber of iterations required to generate the observed

polyene.

(B) HPLC-MS analysis of M. xanthus and S. auran-

tiaca wild-type strains, as well as M. xanthus

mutants PMAT_H and PMDRF_I. Wild-type M.

xanthus produces the DKxanthenes (1) as the ma-

jor metabolites. AT domain mutant PMAT_H pro-

duces the same range of compounds as wild-

type M. xanthus but at lower yields. Production

of DKxanthenes by the mutant PMDRF_I is abol-

ished, the same phenotype observed with all other

KR mutants. The DKxanthenes are produced as

minor metabolites by wild-type S. aurantiaca,

with cultures extracts dominated by myxothiazol

(4). Further metabolites include the lipid species ly-

sophosphatidylethanolamine (2) (Avadhani et al.,

2006) and the myxalamids and myxovirescins (3).

RESULTS AND DISCUSSION

DKxanthene Production in
Myxococcus xanthus DK1050/
DK1622 and Stigmatella aurantiaca

DW4/3-1
Eleven unique DKxanthene derivatives

were recently identified in extracts of

M. xanthus strains DK1050 and DK1622

(Meiser et al., 2006), with evidence for sev-

eral additional metabolites. The structures

range in mass from 492 to 586 Da and dif-

fer in overall chain length, extent of methyl

branching, and modification of the termi-

nal asparagine residue by hydroxylation

(Figure 1A). DKxanthenes �518, �534, and �560 have been de-

tected in all 98 strains of M. xanthus investigated to date (Krug

et al., 2008), consistent with their essential role in cellular differen-

tiation. Screening for secondary metabolites in other myxobacte-

rial species revealed the presence of DKxanthenes in extracts of

Stigmatella aurantiaca DW4/3-1; in this strain, the DKxanthenes

represent minor metabolites, as myxothiazol constitutes the major

product (Figure 1B). Many of the DW4/3-1 DKxanthenes (�504,

�518, and �545; Figure 1A) had previously been identified in

M. xanthus DK1050. However, two novel derivatives were

detected that carry a proton at position R1, a structural variation

present in the known M. xanthus metabolites DKxanthene �504

and �520. Both of the novel compounds, DKxanthene �530

and �556, were subsequently identified as minor components in

extracts of M. xanthus DK1050, bringing the total number of family

members in the strain to 13. Additionally, we observed two com-

pounds in DW4/3-1 with the same masses as DKxanthene �548

and �574 but whose retention times and fragmentation patterns

differed, suggesting that the structures are also novel.
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Figure 2. The DKxanthene Biosynthetic Gene Clusters of M. xanthus DK1622 and S. aurantiaca DW4/3-1

Schematic representation of the DKxanthene biosynthetic loci in M. xanthus and S. aruantiaca: dark gray, genes involved in starter unit biosynthesis; hatched,

PKS genes; checkered, NRPS genes; black, putative hydroxylase; and white, genes of unknown function. The S. aurantiaca cluster lacks dkxC and dkxD relative

to M. xanthus but incorporates additional genes, including discrete PKS domains (see also Tables 1 and 2).
Identification and Analysis of the DKxanthene
Biosynthetic Gene Clusters in M. xanthus

and S. aurantiaca DW4/3-1
The complete genome sequence of M. xanthus DK1622 was

published recently (Goldman et al., 2006). However, the strain

exhibits yellow/tan phase variation (Ruiz-Vazquez and Murillo,

1984), which we anticipated would complicate the analysis of in-

sertional mutagenesis experiments designed to identify the

DKxanthene biosynthetic locus. We therefore located the gene

cluster in M. xanthus strain DK1050, a stable yellow variant of

the shared parental strain, M. xanthus FB (Ruiz-Vazquez and Mu-

rillo, 1984). DK1050 and DK1622 produce the same spectrum of

DKxanthene derivatives in the same proportions, strongly sup-

porting the equivalency of the gene clusters in the two strains.

The DKxanthene cluster in DK1050 was identified by pMyco-

Mar-based transposon mutagenesis, as described elsewhere

(Sandmann et al., 2004): tan colonies were isolated and the

transposon insertion site was identified by vector recovery

from genomic DNA. Sequenced fragments of the cluster in

DK1050 were then used in BLAST (Altschul et al., 1997) analysis

against the DK1622 genome sequence. The DK1622 cluster

(dkxDK; Figure 2) occupies approximately 48 kbp of the genome

and exhibits an average GC content of 69%, which is character-

istic of myxobacteria. The DKxanthene cluster in S. aurantiaca

DW4/3-1 was identified using sequence information from two

neighboring but nonoverlapping contigs from the unfinished ge-

nome sequence of this strain and sequencing of the missing re-

gion in gene dkxS. The identity of the cluster was then confirmed

by insertional mutagenesis within the KS domain of dkxG, which

resulted in a DKxanthene-negative phenotype (Table S1, avail-

able online). The cluster in S. aurantiaca (dkxDW) is approximately

51 kbp in size, with an overall GC content of 65%.

The complement of core biosynthetic genes in each species is

the same, and the corresponding genes exhibit high sequence

identity (Table S2), suggesting a common evolutionary origin

for the two clusters. The shared genes encode enzymes for

starter unit selection and modification (dkxA, dkxB, and dkxE),
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four PKS multienzymes (dkxF, dkxH, dkxI, and dkxN), an NRPS

(dkxJ), and a hybrid PKS-NRPS subunit (dkxG) (Figure 2 and Ta-

ble 1). The DKxanthene biosynthetic gene cluster in DW4/3-1

lacks the M. xanthus genes dkxC and dkxD, however, which

are homologs of type I phosphodiesterases and FAD-dependent

monooxygenases, respectively (Table 2). Genes dkxP, dkxQ,

dkxR, dkxS, and dkxT are present in S. aurantiaca but are missing

in the M. xanthus cluster (Tables 1 and 2). One possible explana-

tion for the observed architectures is that both gene clusters

evolved from a common ancestor by gene insertion (in the

dkxB/dkxE intergenic region in the case of M. xanthus, and into

both the dkxL/dkxN and dkxN/dkxO intergenic regions of

S. aurantiaca).

Determining the Order of PKS and NRPS Subunits
in the DKxanthene Assembly Line
In many systems of Streptomycete origin, the sequence of the

biosynthetic proteins within the pathway directly correlates

with the order of the genes within the cluster. This colinearity is

not observed, however, in the DKxanthene clusters. Gene

dkxN, whose involvement in the pathway was demonstrated by

insertional mutagenesis, is located downstream of gene dkxJ

in both the dkxDK and dkxDW loci. Multienzyme DkxJ incorpo-

rates a terminal thioesterase domain and so is likely to be the

last subunit in the pathway. We assumed, however, that the re-

maining genes were present in the appropriate order; thus, we

aimed to localize multienzyme DkxN among the other subunits.

The assumption of genetic noncolinearity was supported by

analysis of the ‘‘docking domains’’ present on each of the en-

coded multienzymes, which additionally aided in defining the

correct start codon for each polypeptide. Docking domains are

short sequence elements, located at both the C and N termini

of the proteins, which mediate specific recognition between suc-

cessive subunits within the synthetases (Richter et al., 2008). Se-

quence analysis has identified two groups of docking domains

within mixed PKS-NRPS. The first operates at PKS-PKS junc-

tions, whereas the second functions at either PKS-NRPS or
71–781, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 773
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Table 1. Proteins Involved in PKS/NRPS Biochemistry in DKxanthene Biosynthesis in M. xanthus DK1622 and S. aurantiaca

Protein/Gene Length (bp/aa) Description Module

Domains (Position in Protein

[aa])

DkxA/dkxA 1515/504 L-prolyl-AMP-ligase M1 A1 (155–372)

DkxB/dkxB 1140/279 L-prolyl-S-PCP

Dehydrogenase

M1

DkxE/dkxE 2211/736 M1 KS1 (4–428) PCP1 (613–680)

DkxF/dkxF 4266/1421 PKS M2 KS2 (37–463) AT2 (576–764)

KR2 (1051–1228) ACP2

(1330–1396)

DkxG/dkxG 8922/2973 NRPS/PKS M3 HC3 (69–554) A3 (679–893)

PCP3 (1061–1125)

M4 KS4 (1053–1574) AT4 (1681–

1975) DH4 (2039–2212)

KR4 (2586–2763) ACP4

(2858–2925)

DkxH/dkxH 5562/1854 PKS M5 KS5 (38–463) AT5 (569–861)

DH5(923–1100) KR5 (1460–

1637) ACP5 (1737–1804)

DkxI/dkxI 5490/1829 PKS M6 KS6 (33–457) AT6 (559–853)

DH6 (922–1091) KR6 (1457–

1635) ACP6 (1758–1802)

DkxJ/dkxJ 4308/1435 NRPS M7 C7 (74–504) A7 (676–888)

PCP7 (1054–1118) TE (1146–

1404)

DkxN/dkxN 5559/1852 PKS M8 KS8 (39–467) AT8 (573–571)

DH8 (941–1111) KR8 (1468–

1646) ACP8 (1738–1805)

DkxO/dkxO 789/262 TE M9 TE (26–254)

DkxQ/dkxQa 2334/778 PKS KR (580–737)

DkxR/dkxRa 627/209 PKS ACP (126–193)

DkxT/dkxTa 2850/950 PKS KS (33–458) AT (563–849)
a The indicated data correspond to the M. xanthus DKxanthene biosynthetic gene cluster, with the exception of proteins DkxQ, DkxR, and DkxT which

are present only in S. aurantiaca.
NRPS-NRPS interfaces; presumptive docking domains, which

occur at NRPS-PKS junctions, do not exhibit obvious mutual se-

quence similarities (Weissman and Müller, 2008a). The existence

of multiple, inherently orthogonal sets of docking elements is as-

sumed to play a crucial role in ensuring the correct ordering of
774 Chemistry & Biology 15, 771–781, August 25, 2008 ª2008 Elsev
subunits within the assembly lines (Richter et al., 2008). The

NMR solution structure of a representative NRPS N-terminal

docking domain was solved recently (Richter et al., 2008). The

domain adopts a novel abbaa fold featuring an exposed b-hair-

pin, which serves as the binding site for the partner docking
Table 2. Predicted Functions of Non-PKS/NRPS Proteins Present in the DKxanthene Biosynthetic Gene Clusters of M. xanthus

and S. aurantiaca

Protein/

Gene

Length

(bp/aa)

Putative Function/

Homolog Origin

Similarity/

Identity, (%)

Accession Number

of the Protein Homolog

DkxC/dkxCa 1386/462 Type 1 phosphodiesterase Nodularia spumigena CCY9414 74/49 ZP_016285151

DkxD/dkxDa 2544/847 FAD-dependent monooxygenase Herpetosiphon aurantiacus ATCC 23779 58/38 YP_001544272

DkxK/dkxK 1059/352 Phospholipase, patatin family Angiococcus disciformis 49/33 CAF05653

DkxL/dkxL 1164/387 Arsenite-acitvated ATPase ArsA Solibacter usitatus Ellin6076 57/33 YP_827141

DkxP/dkxPb 399/133 No homology

DkxM/dkxM 471/156 No homology

DkxS/dkxSb 1878/626 Radical SAM domain protein Solibacter usitatus Ellin6076 58/40 YP_822161

The data shown correspond to the M. xanthus DKxanthene biosynthetic gene cluster, if not otherwise indicated.
a ORF present only in M. xanthus DK1622.
b ORF present only in S. aurantica DW4/3-1.
ier Ltd All rights reserved
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domain. The pattern of solvent-accessible charged residues on

the b sheet appears to define an electrostatic ‘‘code’’ for docking

at this type of interface.

Consistent with our proposed order, the docking domains at

the DkxI/DkxJ junction show convincing homology to other

docking elements that operate at PKS-NRPS interfaces from

a range of systems; the positive charges of the putative code res-

idues on DkxJ (two Arg) are complemented by a negative charge

cluster on the upstream partner DkxI (two Glu) (Figure S1). The

C-terminal docking domain of PKS DkxF, which should also

interact with an NRPS docking domain, does not exhibit strong

homology to the DkxI sequence group (Figure S1); however, it

contains a charge cluster in an equivalent position, but whose

polarity is reversed (Lys, Arg). Correspondingly, several sol-

vent-accessible residues on the presumptive b sheet of DkxG

are negatively charged. Furthermore, the N-terminal docking do-

mains of DkxF, H, N, and I cluster with other docking domains

from PKS-PKS junctions, as do the C-terminal docking domains

of DkxE, G, H, and N. However, the docking elements show

enough sequence variability, particularly among the N-terminal

domains (Figure S1), to support their role as specificity determi-

nants. Taken together with the mechanistic requirements of the

pathway, these considerations narrowed the possible locations

of subunit DkxN to positions downstream of either DkxG or

DkxH (Figure 2).

The gene cluster in S. aurantiaca contains three additional

PKS genes relative to that of M. xanthus, dkxQ encoding a dis-

crete KR domain, dkxR encoding a standalone ACP, and dkxT

encoding a KS-AT didomain, which together could form a func-

tional module; such ‘‘split module’’ organization has precedence

in mixed assembly lines from myxobacteria, Bacillus species,

and other bacteria (Julien et al., 2006; Perlova et al., 2006;

Kopp et al., 2005; Simunovic et al., 2006; Chen et al., 2006;

Butcher et al., 2007; Silakowski et al., 2001). However, the

gene complement in M. xanthus is sufficient to generate the

full range of DKxanthenes observed in S. aurantiaca, and so

such an additional module is not required for the biosynthesis.

Indeed, inspection of the AT domain of DkxT shows that it con-

tains mutations in two active site residues (Ser91 and H201, num-

bered according to Yadav et al., 2003), and so is unlikely to be

active.

Biosynthesis of the DKxanthene Backbones
Unless specified otherwise, the following discussion will refer to

the DKxanthene pathway in M. xanthus DK1622, because that in

S. aurantiaca DW4/3-1 is expected to be the same (mutual se-

quence identity between all proteins is greater than 64%; Table

S2). We hypothesized that the starter unit incorporated into the

DKxanthenes was likely to be pyrrole carboxylic acid, a building

block that is present in several other natural products of bacterial

origin, including pyoluteorin (Thomas et al., 2002) and coumer-

mycin A1 (Xu et al., 2002; Garneau et al., 2005). In these path-

ways, L-proline is activated as its adenylate by a free-standing

A domain (PtlF [pyoluteorin] and ProB [coumermycin A1], re-

spectively), and transferred to a discrete PCP (PtlE; ProA),

thereby sequestering the amino acid from primary metabolism.

The carrier protein-bound residue then undergoes a four-elec-

tron oxidation catalyzed by a novel class of flavoprotein dehy-

drogenases (PtlL; ProC), to afford the pyrrole-2-carboxylate.
Chemistry & Biology 15, 7
The resulting thioester species is activated as an acyl donor for

subsequent reactions. Inspection of the gene complement in

the DKxanthene cluster suggests that the pathway uses a similar

strategy to divert proline into secondary metabolism. Clear ho-

mologs for both the adenylation and dehydrogenase activities

are present in the cluster �DkxA and DkxB, respectively

(45%–49% identity on the protein level). However, the cluster

does not contain a discrete ACP domain analogous to PtlE and

ProA. Instead, the activated prolyl-AMP is likely to be thioesteri-

fied directly onto the ACP domain of the unusual didomain KS-

ACP loading module, DkxE (Figure 3). Consistent with the nones-

sential nature of the KS domain for the biosynthesis, sequence

analysis suggests that the domain is inactive, because it exhibits

significant deviations from typical KS active site motifs (e.g., sub-

stitution of an essential His by Tyr) (Table S3).

To provide support for this proposal, the A domain homolog

dkxA was inactivated by plasmid insertion in M. xanthus. As an-

ticipated, the resulting mutant PM1284 exhibited a DKxanthene-

negative (Dkx�) phenotype. Production of the DKxanthenes

could be restored to 25% of wild-type level by administration

of N-acetyl-S-pyrrolyl-2-carboxylcysteamine (pyrrolyl-2-car-

boxyl-SNAC) to cultures of PM1284. However, alternative sub-

strates including the NAC thioesters of benzoic acid and nico-

tinic acid were not accepted (data not shown). Reconstitution

in this case presumably arose from recognition of pyrrolyl-2-car-

boxyl-SNAC as an analog of the ACP-bound thioester, strongly

supporting the involvement of the pyrrolyl-2-carboxyl-ACP in

the pathway (Figure 3B). Taken together, these data bolster the

proposal that biosynthesis of mono-pyrrolic natural products in

microbes occurs by a common molecular logic, in which carrier

proteins are used as a device for substrate channeling (Walsh

et al., 2006).

The first round of chain extension occurs with condensation of

pyrrolyl-2-carboxylate with malonate, catalyzed by the PKS

module DkxF. DkxF exhibits several unusual features relative

to ‘‘classical’’ PKS modules. For example, the AT domain shows

only weak homology to other PKS AT domains, and the active

site Ser residue appears to be absent. Other PKS systems,

such as those responsible for biosynthesis of aureothin (He

and Hertweck, 2005), pyoluteorin (Nowak-Thompson et al.,

1997, 1999), and neocarzilin (Otsuka et al., 2004), contain simi-

larly aberrant and, presumably, nonfunctional AT domains. In

the case of aureothin, the affected module has nonetheless

been shown to participate in chain extension (He and Hertweck,

2005). As with DKxanthene biosynthesis, the basis for comple-

mentation of the AT activities remains unknown, but presumably

malonate is furnished to the ACP domain by a discrete AT

domain acting in trans. Module DkxF also lacks an integral DH

domain required to generate the double bond observed in the

DKxanthene metabolite family. As postulated for other myxo-

bacterial PKS, the functions of the missing DHs may be comple-

mented by the iterative action of a DH domain located in a down-

stream module (Perlova et al., 2006; Frank et al., 2007; Tang

et al., 2004), or by a discrete DH domain encoded elsewhere in

the genome. Alternatively, formation of the stable, conjugated

system may not require specific catalysis. Biosynthesis

continues with a switch to NRPS logic. The next building block

incorporated into the DKxanthenes is L-threonine, as demon-

strated by feeding studies using [13C, 15N]-labeled amino acid
71–781, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 775
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Figure 3. Model for DKxanthene Biosynthe-

sis, Shown for the Major Metabolite DKxan-

thene �534 in M. xanthus DK1622

(A) Biosynthesis is initiated by transfer of L-proline

to the ACP of subunit DkxE by the A domain DkxA,

followed by DkxB-catalyzed dehydrogenation to

afford pyrrole-2-carboxylate.

(B) Inactivation of gene dkxA leads to DKxanthene-

negative mutants; production is restored by ad-

ministration of pyrrolyl-2-carboxyl-SNAC. The bio-

synthetic position of DkxN in the assembly line is

suggested by analysis both of the cluster architec-

ture and of putative ‘‘docking domains.’’ However,

we cannot at present exclude an alternative mod-

ule ordering, in which subunits DkxN and DkxH are

reversed. The solid curved arrow indicates the

proposed iterative behavior of DkxN, which gives

rise to the polyene of DKxanthene �534. Our

data also provide direct evidence for iteration by

the PKS module of DkxG (dotted curved arrow),

in the biosynthesis of other DKxanthene metabo-

lites. PKS portion (light gray): KS, ketosynthase;

AT, acyl transferase; KR, ketoreductase; DH,

dehydratase; and T, thiolation (acyl carrier pro-

tein). NRPS portion (black): HC, heterocyclization;

A, adenylation; T, thiolation (peptidyl carrier pro-

tein); and C, condensation domain. TE (white),

thioesterase.
(Meiser et al., 2006). Cyclization of threonine by the N-terminal

HC domain affords the 5-methyloxazoline moiety.

Together, the next four PKS modules install the characteristic

polyene functionality of the DKxanthenes. According to ‘‘text-

book’’ rules for biosynthesis on modular multienzymes, each

module catalyzes a single round of chain extension. However, in-

spection of the cluster reveals that the 4 PKS modules of DkxG,

H, N, and I are insufficient to accomplish the 5–8 cycles of chain

extension required to generate the observed set of polyenes.

This finding suggests that at least one PKS module operates re-

peatedly, a variant on standard PKS biochemistry that is known

from several other myxobacterial and Streptomyces systems

(Olano et al., 2003; He and Hertweck, 2003; Wenzel and Müller,

2007; Tatsuno et al., 2007). Although in principle multiple mod-

ules may act repeatedly, in all systems characterized to date,

only a single module iterates (Arakawa et al., 2005; Olano

et al., 2003; He and Hertweck, 2003; Gaitatzis et al., 2002;

Wenzel et al., 2005). As judged by the relative metabolite yields

in DK1050 (Figure 1), iteration most often occurs twice, though

a third chain extension is also common. Theoretically, any of

subunits DkxG, DkxH, DkxN, and DkxI could act iteratively,

because they include the appropriate complement of reductive

activities to generate a double bond, and the AT domain in

each case is predicted to show specificity for malonyl-CoA

(Table 3; Haydock et al., 1995; Yadav et al., 2003). However,

a significant number of the DKxanthenes generated by both

strains incorporate methylmalonate as an extender unit during

the third chain extension cycle. The simplest explanation is

that the PKS module of DkxG catalyzes this round of chain ex-

tension, using alternatively methylmalonate and malonate as

building blocks. Indeed, sequence analysis shows that the spec-

ificity motifs in the AT domains of DkxG diverge most sig-

nificantly from the consensus sequence for malonate-selective

domains (Table 3).
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To support this hypothesis, we mutated the RAAH motif (res-

idues 198–201) of the DkxG AT domain to that characteristic of

malonate-specific AT domains (HAFH) (Del Vecchio et al.,

2003) using double homologous recombination. Although this

change almost completely abolished DKxanthene production

(3% of wild-type), we detected an approximately 2-fold increase

(and up to 5-fold in single experiments, presumably due to natu-

ral fluctuation in production) in the yield of derivatives incorporat-

ing malonate instead of methylmalonate (wild-type, DKxanthene

�534:DKxanthene �520 = 10:1; mutant PMAT_G, 5:1), support-

ing the idea that the observed sequence divergence underlies

the promiscuity of the AT domain. Similarly, the final polyketide

extender unit incorporated into the DKxanthenes is always

methyl-malonate. This observation suggests that DkxI catalyzes

this single round of chain extension, despite its predicted prefer-

ence for malonate (Table 3). Taken together, these data implicate

either or both of DkxH or DkxN as the iteratively acting module(s).

However, consideration of the nonlinear cluster architecture

implicates DkxN as the iterative module and suggests a possible

basis for the high level of stuttering. One plausible explanation for

the positioning of dkxN within the locus is that the gene was ac-

quired by horizontal transfer, because the closest homologs of

dkxN were identified in species other than M. xanthus (data not

shown). If the evolutionary integration of DkxN into the pathway

is not complete, then docking interactions with both its upstream

and downstream partners may be inefficient. In the absence of

rapid chain transfer between the subunits, intramodular back

transfer of the intermediates from the ACP to the KS domains

could become competitive, leading to repetitive chain extension.

According to this model, the introduction of DkxN between sub-

units DkxG and DkxH would lead to iteration both by the PKS

module of DkxG (giving rise to DKxanthenes �548 and �574 in

M. xanthus DK1622), and by module DkxN itself (to yield the re-

maining metabolites in both strains). Direct experimental support
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Table 3. Active Site, Underlined, and Additional Conserved Residues that Correlate with Domain Specificity in DKxanthene AT

Domains from M. xanthus DK1622 (DK) and S. aurantiaca DW4/3-1 (DW)

Domain 11 63 90 91 92 93 94 117 200 201 231 250 255 15 58 59 60 61 62 70 72 197 198 199

DkxG_DK Q Q G H S T G R A H M Q V Y Q L D Y A E A P R A

DkxG_DW Q Q G H S T G R A H M Q V Y Q F D Y A E A P R A

DkxH_DK Q Q G H S V G R F H L H V Y E T R Y T E A S H A

DkxH_DW Q Q G H S V G R F H L H V Y E T R Y T E A S H A

DkxI_DK Q Q G H S L G R F H L Q V R D T R H A E A S Y A

DkxI_DW Q Q G H S L G R F H L H V Q D T R N A E A P H A

DkxN_DK Q Q G H S V G R F H L H V W E T G F T E A S H A

DkxN_DW Q Q G H S V G R F H L H V W E T G Y T E A S H A

DkxN’_DW Q L G S G T G L M S V S S P A P G I A Q G P H A

Consensus active site residues for methylmalonate- and malonate-specific AT domains are QQGHS[QMI]GRSHT[NS]V and QQGHS[LVIFAM]GR-

[FP]H[ANTGEDS][NHQ]V, respectively (Yadav et al., 2003). Residues in bold correspond to a shorter sequence motif that correlates with specificity

for methylmalonate (YASH) or malonate (HAFH) (Del Vecchio et al., 2003; Haydock et al., 1995).
for this hypothesis is provided by analysis of the AT mutant of

DkxG. In wild-type cultures of M. xanthus, DKxanthene�548 (in-

corporating a methyl group at R2) is produced at similar levels to

DKxanthene �534 (incorporating a hydrogen at R2). However, in

the AT mutant in which DKxanthene�534 is present, production

of DKxanthene�548 relative to DKxanthene 534 is reduced by at

least 2-fold (i.e., to essentially background levels), on the basis of

analysis of extracts in quintuplicate. Thus, the mutation to alter

the AT specificity of DkxG affected extender unit selection in

two successive rounds of chain extension (see above), consis-

tent with the iterative action of the module. The fact that metab-

olites exhibiting a methyl group at R2 are not observed in S. aur-

antiaca (Figure 1A) suggests that docking between DkxG and

DkxN in this strain may be more effective. In addition, some as

yet unidentified structural feature of DkxN may favor iterative be-

havior, because the biosynthesis of every metabolite requires at

least one iteration. A model invoking inefficient docking between

a ‘‘single use’’ and an inherently iterative module may also apply

to the biosynthesis of the myxochromides in S. aurantiaca DW4/

3-1 (Wenzel et al., 2005), in which the chain length of the polyene

functionality is variable. Despite the appeal of this proposal, we

cannot at present exclude an alternative mechanism in which

DkxH is the iterative module, or indeed in which both DkxN

and DkxH act repeatedly.

To attempt to provide further experimental support for this

mechanism, the conserved NADPH-binding motif (GxGxxG) of

each KR domain within subunits DkxG, H, I, and N was disrupted

by point mutation. We hoped that the presence of several unre-

duced keto groups in the products of one or more mutants would

confirm which module or modules was iterating. Disappointingly,

all of the mutations completely abolished production of the

DKxanthenes (Figure 1B, mutant PMDRF_I). We also mutated

the malonate-specific HAFH motif (Haydock et al., 1995) of the

DkxH AT domain to the methymalonate-specific YASH, antici-

pating that novel methyl branching within the products would al-

low us to pinpoint the location of the subunit within the assembly

line. However, the product profile relative to wild-type was

unchanged, although overall metabolite yields dropped to ap-

proximately 10% of the wild-type level (Figure 1B). Therefore,

the identity of the highly iterating module (DkxN, DkxH, or

both) remains to be demonstrated, as do the factors controlling
Chemistry & Biology 15, 7
the number of times chain extension is repeated. Experiments to

address these issues are ongoing in the laboratory.

By use of HPLC-MS, we routinely detected DKxanthene me-

tabolites that appeared as double peaks. These data suggest

that each DKxanthene is present in extracts as a mixture of cis

and trans isomers. The final double bond geometry is assumed

to arise from DH-catalyzed dehydration of a b-hydroxy precur-

sor. Comparison by Caffrey (2003) of KR domains from a large

number of PKS systems revealed sequence motifs which corre-

late with the two alternative directions of ketoreduction, termed

A- and B-side selective (Baerga-Ortiz et al., 2006; O’Hare et al.,

2006). Assuming that dehydration occurs by syn elimination of

water, B-side reduction predicts a final trans double bond

geometry. All KR domains within the DKxanthene cluster bear

the hallmark motifs of B-selective enzymes, an observation

that predicts that the native DKxanthenes should exhibit exclu-

sively trans double bonds. The presence of cis isomers is there-

fore ascribed to (light-induced) isomerization under the work-up

conditions.

The final round of chain extension occurs on the NRPS subunit

DkxJ, with incorporation into the intermediate of asparagine, fol-

lowed by TE-catalyzed release of the intermediates as their free

acids (Figure 3). The 10-residue specificity motif (DGTKVGEV) of

the DkxJ A domain, although consistent with a preference for

Asn, shows deviations from the canonical code (Stachelhaus

et al., 1999; Challis et al., 2000). This observation encouraged

us to attempt to alter the domain’s specificity by mutating one

or two residues to yield, respectively, the motifs associated

with activation of aspartate (DLTK(IV)G(AH)(VI); mutant PMAsp)

and tyrosine (D(GA)(TL)(IG)T(AG)EV; mutant PMTyr). However,

the PMAsp mutant failed to produce novel analogs of the DKxan-

thenes, whereas biosynthesis in the PMTyr mutant was com-

pletely abolished. This result is perhaps not surprising, because

attempts to alter the specificity of A domains by site-directed

mutagenesis have produced modest results, likely because of

the strong proofreading activity of the condensation domains

at their acceptor sites (Lautru and Challis, 2004). Alternatively

or in addition, the TE was unable to recognize the novel amino

acids. The intolerance of the DKxanthene assembly line to

changes in both PK and NRP extender units contrasts dramati-

cally with the ability of subunits DkxI and DkxJ to recognize
71–781, August 25, 2008 ª2008 Elsevier Ltd All rights reserved 777
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a variety of chain extension intermediates of differing lengths.

Taken together, these data imply that evolution has selected

for specific structural features (e.g., an unfunctionalized polyene,

the terminal Asn) in the DKxanthenes, suggesting their impor-

tance for the biological activity of the metabolites.

The cluster also contains a discrete (or type II) TE activity en-

coded by dkxO. Type II TEs are postulated to regenerate stalled

assembly lines through hydrolytic release of misacylated (Heath-

cote et al., 2001; Schwarzer et al., 2002), and in the case of

NRPS, mis-aminoacylated (Yeh et al., 2004) substrates from

the integral carrier proteins. Consistent with these proposed

functions, inactivation of dkxO by homologous recombination re-

duced the production of the DKxanthenes to 5% of wild-type

levels.

Post-Assembly Line Elaboration of the DKxanthenes
M. xanthus DK1622 produces 7 derivatives that are not present

in S. aurantiaca DW4/3-1. The majority of these metabolites arise

from hydroxylation at the b-position of Asn (Figure 1B), which is

assumed to occur following release of the chain from DkxJ. In

addition, three hydroxylated metabolites (DKxanthene �548,

�574, and�586) that do not have nonhydroxylated counterparts

in either of the strains are present in M. xanthus. As discussed

previously, compounds �548 and �574 may arise from stutter-

ing of module DkxG within the M. xanthus pathway. Consistent

with these observations, the gene cluster in M. xanthus contains

a putative FAD-binding monooxygenase, DkxD, which is absent

from the biosynthetic locus in DW4/3-1. However, several at-

tempts to demonstrate the function of DkxD as an asparagine

hydroxylase, including deletion and selective inactivation of the

gene, failed. Deletion of gene dkxC (which is also absent in

S. aurantiaca) was successful but did not alter DKxanthene pro-

duction in M. xanthus (data not shown), suggesting that it is not

involved in the pathway or is complemented by a gene located

elsewhere on the chromosome. Both clusters also contain the

gene dkxK, which encodes a putative patatin-like phospholi-

pase. A function for such an enzyme in the pathway is not obvi-

ous, but intriguingly, genes for patatin-like proteins are present in

other biosynthetic gene clusters from myxobacteria, such as that

for tubulysin biosynthesis in Angiococcus disciformis (Sand-

mann et al., 2004). Experiments to explore possible functions

for DkxK are under way.

SIGNIFICANCE

A feature that distinguishes many myxobacterial megasyn-

thetase systems from their Streptomyces counterparts is

the generation of natural product families, some of which

are large. We have identified five DKxanthene mixed polyke-

tide-nonribosomal polypeptide metabolites in the myxobac-

terium Stigmatella aurantiaca that differ not only in the

length of the central polyene chromophore but also in the

degree of methyl branching. A further eight structures

have been characterized from Myxococcus xanthus, many

of which incorporate a hydroxylated asparagine residue.

Our analysis of the gene clusters from these two microor-

ganisms has begun to shed light on the mechanistic basis

for this ‘‘diversity-oriented’’ biosynthesis, which may be rel-

evant to additional PKS-NRPS pathways in myxobacteria
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and other microbes. In DKxanthene biosynthesis, the 5–8

double bonds likely derive from different levels of iteration

by one or more PKS modules within the mixed PKS-NRPS

synthetase. This variable ‘‘stuttering’’ of chain extension

may be induced by the presence of at least one suboptimal

intersubunit interface, so that intramodular back transfer

of intermediates becomes kinetically competitive with inter-

modular chain transfer. An additional level of diversity is

introduced by an AT domain that recruits both malonate

and methylmalonate as building blocks for chain extension.

Despite the inherent tolerance of this system to structural

variation, our attempts deliberately to alter the metabolites

by genetic engineering met with limited success. These

data demonstrate that both tight substrate specificity and

relative promiscuity can coexist within a single multienzyme

assembly line and point to the importance of particular func-

tionalities in conferring bioactivity on the metabolites.

EXPERIMENTAL PROCEDURES

General Materials and Methods

Chemical reagents were obtained from Sigma-Aldrich and used without fur-

ther purification. All solvents were purified by distillation. Reaction progress

was monitored by TLC using 0.2 mm precoated plastic sheets (Polygram Sil

G/UV245; Macherey-Nagel). Column chromatography was performed using

Merck Kieselgel 60. NMR spectra were recorded on a Bruker AMX400 spec-

trometer with TMS as internal standard. Coupling constants 3JH,H are given

in Hz.

Strains and Growth Conditions

Wild-type and mutant strains of Myxococcus xanthus DK1050 (Ruiz-Vazquez

and Murillo, 1984) were grown at 30�C in CTT medium (Kroos et al., 1986).

S. aurantiaca DW4/3-1 (Qualls et al., 1978) and its mutants were grown at

30�C in tryptone or tryptone-starch medium (Silakowski et al., 1998). E. coli

strains TOP10 (Invitrogen) and DH10B were grown at 37�C in Luria-Bertani

(LB) medium (Sambrook et al., 1989). When required, kanamycin was used

at 40 mg ml�1.

Analysis of DKxanthene Production

M. xanthus and S. aurantiaca cells were cultivated in 30 ml CTT or tryptone me-

dium, respectively, harvested after three days of growth, and extracted with

ethyl acetate:methanol (1:4). The extracts were concentrated in vacuo and

then analyzed by use of HPLC-MS (Agilent 1100 series HPLC coupled to

a Bruker HCT plus mass spectrometer set to positive ionization mode). To

quantify metabolite yields, peaks corresponding to specific DKxanthenes in

the extracted ion chromatograms were integrated, and the yield of the respec-

tive metabolites was calculated with respect to the cell density by dividing the

total amount of DKxanthene by the optical density. Compound pairs DKxan-

thene�520/�534, and�534/�548 were chosen as the representatives of me-

tabolites that incorporate zero to two methyl groups at positions R1 and R2. To

compare production by M. xanthus wild-type and mutant strains PMAT_DkxG

and PMAT_DkxH, we determined the production ratios of DKxanthene �534

to DKxanthene �520 and DKxanthene �534 to DKxanthene �548, respec-

tively.

Identification of the DKxanthene Biosynthetic Gene Cluster

in S. aurantiaca DW4/3-1

Two contiguous sequences of S. aurantiaca were identified by sequence com-

parison with the DKxanthene gene cluster of M. xanthus DK1622, which

spanned genes dkxA to the beginning of dkxS, and the end of dkxS to dkxO,

respectively. The KS domain of the NRPS/PKS-encoding gene dkxG was inac-

tivated, leading to the abolishment of DKxanthene production (see below). The

missing sequence information for gene dkxS was obtained by PCR with

primers PKSx2_550f (50-CCCCCGTGAGGAGTTGAC-30) and PKSx2_551r

(50-GTGCGCAGCTCGTGGACA-30) using S. aurantiaca DW4/3-1 genomic
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DNA. The resulting 400 bp fragment was cloned into plasmid pCR2.1-TOPO

and sequenced (MWG Biotech AG). The sequence has been deposited in

the EMBL database under accession code BN001209.

Annotation of the DKxanthene Biosynthetic Gene Clusters

and Assignment of Domain Functions

Sequence information for the DKxanthene biosynthetic gene clusters in

M. xanthus DK1622 was obtained from TIGR (http://www.tigr.org/tdb). Protein

and domain analysis were performed using the NCBI protein blast (http://

www.ncbi.nlm.nih.gov/BLAST/) as well as a NRPS/PKS-analysis program

(http://www.tigr.org/jravel/nrps/).

Inactivation of dkxA, dkxN, and dkxO in M. xanthus DK1050,

and dkxG in S. aurantiaca DW4/3-1

Genes dkxA, dkxN, and dkxO were disrupted in M. xanthus DK1050. An internal

fragment of each gene was amplified from M. xanthus genomic DNA by PCR

using Taq polymerase (Fermentas) (for oligonucleotide sequences see Table

S1). To inactivate dkxG in S. aurantiaca DW4/3-1, an 824 bp internal fragment

of dkxG was amplified using HotStarTaq DNA polymerase (QIAGEN). All PCR

fragments were cloned into plasmid pCR2.1-TOPO, and the resulting plasmids

(Table S1) were purified from E. coli TOP10 (Invitrogen) or DH10B cells and in-

troduced into M. xanthus DK1050 or S. aurantiaca DW4/3-1, respectively, by

electroporation (Gorski and Kaiser, 1998). Mutants were tested for kanamycin

resistance and were genetically verified by PCR using a plasmid-specific

primer pair and two primers that bind in the genome outside the inactivation

fragment (Jakobsen et al., 2004).

Inactivation of Ketoreductase Domains of dkxG, dkxH, dkxI,

and dkxN in M. xanthus DK1050

A 1200 bp fragment of each ketroreductase domain incorporating the desired

mutation in the NADPH-binding motif was amplified by overlap extension PCR

(Higuchi et al., 1988) using Phusion polymerase (Finnzymes). The PCR prod-

ucts were subsequently digested (SacI/XbaI) and cloned into plasmid

pSWU41, which was previously digested with both SacI and XbaI; pSWU41

contained a neomycin phosphotransferase (nptII) and levansucrose (sacB)

gene cassette (Wu and Kaiser, 1996). (Details of plasmid construction and ol-

igonucleotide sequences are provided in Table S1.) The final plasmids—

pDkxG_KR, pDkxH_KR, pDkxI_KR and pDkxN_KR, respectively—were intro-

duced into M. xanthus DK1050 by electroporation, and clones were selected

for kanamycin resistance. In each case, correct integration into the genome

was confirmed by PCR. To obtain double homologous recombination, single

crossover mutants were grown in CTT medium without kanamycin and were

repeatedly recultured in fresh medium. Aliquots were regularly drawn from

the culture broth, mixed with CTT soft agar containing 5% sucrose, and plated

onto CTT agar plates containing 5% sucrose. Single clones were transferred

onto fresh CTT agar plates containing either sucrose or kanamycin. Colonies

that grew only on sucrose agar were analyzed genetically and tested for sec-

ondary metabolite production. Chromosomal DNA was obtained from the po-

tential mutants, and the target sequence in the KR domains was amplified by

PCR. The PCR fragment was cloned into plasmid pCR2.1-TOPO and was se-

quenced to confirm the presence of the desired mutation. Mutants exhibiting

the desired genotype were designated PMDRF_G, PMDRF_H, PMDRF_I, and

PMDRF_N for mutations in the KR domains of dkxG, dkxH, dkxI, and dkxN,

respectively.

Alteration of the Specificity-Conferring Residues of the AT Domains

of dkxG and dkxH in M. xanthus DK1050

The specificity-conferring residues (Del Vecchio et al., 2003; Yadav et al.,

2003) of all DKxanthene AT domains were identified. Target residues in the

AT domains of dkxG and dkxH domains were then mutated using a double

crossover strategy, as described above. In both cases, a fragment containing

the mutated residues was generated by overlap extension PCR. The dkxG

fragment was digested with SacI/BamHI, whereas the dkxH fragment was di-

gested with SacI/XbaI, and then both fragments were cloned into previously

digested pSWU41 (oligonucleotide sequences are provided in Table S1).

Transformation, cultivation, and screening for single crossover and double

crossover mutants was performed as described above. Mutants bearing the

desired genotype were designated PMAT_G and PMAT_H, respectively.
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Attempted Alteration of the Substrate Specificity of the A Domain

of dkxJ in M. xanthus DK1050

The specificity-conferring ‘‘code’’ of the DkxJ A domain-binding pocket was

identified by sequence analysis (Challis et al., 2000; Stachelhaus et al.,

1999). An E322A mutation was introduced to attempt to switch the specificity

from Asn to Asp, whereas two mutations (K278G and V299T) were made in or-

der to switch the specificity to Tyr. In each case, an A domain fragment encom-

passing the mutations was generated by overlap-extension PCR, and the re-

sulting �1200 bp fragment was cloned into plasmid pSWU41, leading to

constructs pDkxJ_Asp and pDkxJ_Tyr, respectively (oligonucleotide se-

quences are provided in Table S1). Transformation, cultivation, and screening

for single and double crossover mutants was performed as described above.

Mutants with the desired genotype were designated PMAsp and PMTyr,

respectively.

Preparation of N-Acetyl-S-Pyrrolyl-2-Carboxylcysteamine

Pyrrol-2-carboxylic acid (1.11 g, 10 mmol), N-acetylcysteamine (1.19 g, 10

mmol), and 4-dimethylaminopyridine (122 mg, 1 mmol) were dissolved in dry

CH2Cl2 (30 ml) and cooled on ice. A solution of N, N0-dicyclohexylcarbodiimide

(2.16 g, 10 mmol) in dry CH2Cl2 (20 ml) was added drop-wise. The reaction

mixture was stirred at room temperature over night. The precipitate (N, N0-di-

cyclohexylurea) was removed by filtration, and the filtrate was concentrated to

dryness. The residue was purified by column chromatography on silica gel us-

ing hexane/ethyl acetate to yield pure N-acetyl-S-pyrrolyl-2-carboxylcyste-

amine (Pyrrolyl-2-carboxyl-SNAC) (1.95 g, 92%). 1H NMR (400 MHz, CDCl3):

d = 1.97 (s, 3H, CH3), 3.18 (t, 2H, J = 6.3, CH2), 3.50 (t, 2H, J = 6.2, CH2),

6.19 (br s, 1H, NH), 6.26–6.29 (m, 1H, CH), 7.01–7.06 (m, 2H, 2 3 CH). 13C

NMR (100 MHz, CDCl3): d = 23.2 (CH3), 27.7 (CH2), 40.0 (CH2), 110.9 (CH),

115.8 (CH), 124.3 (CH), 129.8 (C), 170.5 (CONH), 181.6 (COS).

Feeding of Pyrrolyl-2-Carboxyl-SNAC to Mutant PM1284

Pyrrolyl-2-carboxyl-SNAC (10 mg) was added to a CTT culture of PM1284

(25 ml), at early logarithmic phase. Cultivation, extraction, and analysis by

HPLC-MS were performed as described above.

SUPPLEMENTAL DATA

Supplemental data include six tables and one figure and are available online at

http://www.chembiol.com/cgi/content/full/15/8/771/DC1/.
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